Applied Sciences (Mar 2022)

Mechanical Static Force Negatively Regulates Vitality and Early Skeletal Development in Zebrafish Embryos

  • Marta Carnovali,
  • Giuseppe Banfi,
  • Massimo Mariotti

DOI
https://doi.org/10.3390/app12062912
Journal volume & issue
Vol. 12, no. 6
p. 2912

Abstract

Read online

Skeletal system development and remodelling is regulated by several different factors, including hormones, cytokines, and mechanical forces. It is known that gravity and pressure stimulate mechanosensors on bone cells which transduce mechanical signals to chemical ones. Nevertheless, few data have been provided about the role of mechanical forces on embryo osteogenesis in vivo. Since the zebrafish is an elective model for developmental studies, in particular on bone formation and tissue mineralization, we analyzed in vivo the effects of a static mechanical force generated by a water column on fertilized zebrafish eggs. The results have shown that an increase in the hydrostatic pressure (HP) of up to 5.9% was lethal for 100% of treated embryos at 48 h post fertilization (hpf). A small decrease in length (−2%) and 49% mortality were found in the +4.4% HP embryos compared with the controls. To analyze skeletal development, we evaluated the number of mineralized vertebral bodies in the trunk at five days post fertilization. The embryos grown under +2.4% HP showed a physiological intramembranous mineralization of vertebral bodies whereas the embryos which grew with +3.4% HP showed a significant decrease in mineralization rate (−54%). Morphological analysis of cartilage and bones in embryos at +3.4% HP revealed a delay of both intramembranous and chondrogenic mineralization, respectively, in axial and head bones, whereas the chondrogenesis appeared normal. These data suggested that developing osteoblasts and different mineralization programs are sensitive to mechanical pressure when applied to early embryogenesis.

Keywords