Nature Communications (Aug 2018)

A study paradigm integrating prospective epidemiologic cohorts and electronic health records to identify disease biomarkers

  • Jonathan D. Mosley,
  • QiPing Feng,
  • Quinn S. Wells,
  • Sara L. Van Driest,
  • Christian M. Shaffer,
  • Todd L. Edwards,
  • Lisa Bastarache,
  • Wei-Qi Wei,
  • Lea K. Davis,
  • Catherine A. McCarty,
  • Will Thompson,
  • Christopher G. Chute,
  • Gail P. Jarvik,
  • Adam S. Gordon,
  • Melody R. Palmer,
  • David R. Crosslin,
  • Eric B. Larson,
  • David S. Carrell,
  • Iftikhar J. Kullo,
  • Jennifer A. Pacheco,
  • Peggy L. Peissig,
  • Murray H. Brilliant,
  • James G. Linneman,
  • Bahram Namjou,
  • Marc S. Williams,
  • Marylyn D. Ritchie,
  • Kenneth M. Borthwick,
  • Shefali S. Verma,
  • Jason H. Karnes,
  • Scott T. Weiss,
  • Thomas J. Wang,
  • C. Michael Stein,
  • Josh C. Denny,
  • Dan M. Roden

DOI
https://doi.org/10.1038/s41467-018-05624-4
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 11

Abstract

Read online

Biomarker identification requires prohibitively large cohorts with gene expression and phenotype data. The approach introduced here learns polygenic predictors of expression from genetic and expression data, used to infer biomarker levels in patients with genetic and disease information.