BMC Chemistry (Nov 2022)

Nitrogen and sulfur-doped carbon quantum dots as fluorescent nanoprobes for spectrofluorimetric determination of olanzapine and diazepam in biological fluids and dosage forms: application to content uniformity testing

  • Galal Magdy,
  • Noura Said,
  • Ramadan A. El-Domany,
  • Fathalla Belal

DOI
https://doi.org/10.1186/s13065-022-00894-y
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 14

Abstract

Read online

Abstract A validated, sensitive, and simple spectrofluorimetric method was developed for the analysis of two important CNS-acting drugs, olanzapine and diazepam, in their commercial tablets without the need for any pretreatment steps. The developed method relied on the quantitative quenching effect of each of olanzapine and diazepam on the native fluorescence of nitrogen and sulfur-doped carbon quantum dots (NS@CQDs). NS@CQDs were prepared from thiosemicarbazide and citric acid by a facile one-pot hydrothermal technique. The synthesized NS@CQDs were characterized by different spectroscopic and microscopic techniques. NS@CQDs produced a maximum emission peak at 430 nm using 360 nm as an excitation wavelength. Calibration curves showed a good linear regression over the range of 5.0–200.0 and 1.0–100.0 μM with detection limits of 0.68 and 0.29 μM for olanzapine and diazepam, respectively. The adopted method was used for the determination of the investigated drugs in their tablets with high % recoveries (98.84–101.70%) and low % RSD values (< 2%). As diazepam is one of the most commonly abused benzodiazepines, the developed method was successfully applied for its determination in spiked human plasma with high % recoveries and low % RSD values, providing further insights for monitoring its potential abuse. The quenching mechanism was also studied and confirmed to be through dynamic and static quenching for olanzapine and diazepam, respectively. Due to the high selectivity and sensitivity, content uniformity testing of low-dose tablets was successfully performed by applying the United States Pharmacopoeia guidelines. The method's validation was performed in compliance with ICHQ2 (R1) recommendations.

Keywords