Physiological Reports (Mar 2019)

Ischemic priapism as a model of exhausted metabolism

  • Sanne Vreugdenhil,
  • Pedro J. Freire Jorge,
  • Mels F. van Driel,
  • Maarten W. Nijsten

DOI
https://doi.org/10.14814/phy2.13999
Journal volume & issue
Vol. 7, no. 6
pp. n/a – n/a

Abstract

Read online

Abstract In vivo metabolic studies typically concern complex open systems. However, a closed system allows better assessment of the metabolic limits. Ischemic priapism (IP) constitutes a special model of the compartment syndrome that allows direct sampling from a relatively large blood compartment formed by the corpora cavernosa (CC). The purpose of our study was to measure metabolic changes and the accumulation of end products within the CC during IP. Blood gas and biochemical analyses of aspirates of the CC were analyzed over an 8‐year period. Mean ± SD pH, pCO2, pO2, O2‐saturation, lactate, and glucose of the aspirated blood were determined with a point‐of‐care analyzer. Forty‐seven initial samples from 21 patients had a pH of 6.91 ± 0.16, pCO2 of 15.3 ± 4.4 kPa, pO2 of 2.4 ± 2.0 kPa, and an O2‐saturation of 19 ± 24% indicating severe hypoxia with severe combined respiratory and metabolic acidosis. Glucose and lactate levels were 1.1 ± 1.5 and 14.6 ± 4.8 mmol/L, respectively. pH and pCO2 were inversely correlated (R2 = 0.86; P < 0.001), glucose and O2‐saturation were positively correlated (R2 = 0.83; P < 0.001), and glucose and lactate were inversely correlated (R2 = 0.72; P < 0.001). The positive correlation of CO2 and lactate (R2 = 0.69; P < 0.001) was similar to that observed in vitro, when blood was titrated with lactic acid. The observed combined acidosis underscores that IP behaves as a closed system where severe hypoxia and glycopenia coexist, indicating that virtually all energy reserves have been consumed.

Keywords