Remote Sensing (Sep 2024)

UMMFF: Unsupervised Multimodal Multilevel Feature Fusion Network for Hyperspectral Image Super-Resolution

  • Zhongmin Jiang,
  • Mengyao Chen,
  • Wenju Wang

DOI
https://doi.org/10.3390/rs16173282
Journal volume & issue
Vol. 16, no. 17
p. 3282

Abstract

Read online

Due to the inadequacy in utilizing complementary information from different modalities and the biased estimation of degraded parameters, the unsupervised hyperspectral super-resolution algorithm suffers from low precision and limited applicability. To address this issue, this paper proposes an approach for hyperspectral image super-resolution, namely, the Unsupervised Multimodal Multilevel Feature Fusion network (UMMFF). The proposed approach employs a gated cross-retention module to learn shared patterns among different modalities. This module effectively eliminates the intermodal differences while preserving spatial–spectral correlations, thereby facilitating information interaction. A multilevel spatial–channel attention and parallel fusion decoder are constructed to extract features at three levels (low, medium, and high), enriching the information of the multimodal images. Additionally, an independent prior-based implicit neural representation blind estimation network is designed to accurately estimate the degraded parameters. The utilization of UMMFF on the “Washington DC”, Salinas, and Botswana datasets exhibited a superior performance compared to existing state-of-the-art methods in terms of primary performance metrics such as PSNR and ERGAS, and the PSNR values improved by 18.03%, 8.55%, and 5.70%, respectively, while the ERGAS values decreased by 50.00%, 75.39%, and 53.27%, respectively. The experimental results indicate that UMMFF demonstrates excellent algorithm adaptability, resulting in high-precision reconstruction outcomes.

Keywords