Science and Technology of Nuclear Installations (Jan 2013)

Evaluation of Mo99 and Tc99m Productions Based on a High-Performance Cyclotron

  • J. Esposito,
  • G. Vecchi,
  • G. Pupillo,
  • A. Taibi,
  • L. Uccelli,
  • A. Boschi,
  • M. Gambaccini

DOI
https://doi.org/10.1155/2013/972381
Journal volume & issue
Vol. 2013

Abstract

Read online

Following preliminary feasibility studies which started at Legnaro National Laboratories (LNL) in 2011, the Italian National Institute for Nuclear Physics (INFN) research activities are underway aiming at the alternative, accelerator-driven, Mo99/Tc99m production routes. One of the most promising approaches is to use 100Mo-enriched (i.e., >99%) molybdenum metallic targets, bombarded with high-beam-current, high-energy proton cyclotrons. In order to get a comprehensive map of radionuclides expected, a detailed theoretical investigation has been carried out using the TALYS-TENDL 2012 excitation functions extended up to (p,6n), (p,p5n), and (p,2p4n) levels. A series of quality parameters have thus been calculated both at the end of beam (EOB) and at longer times. Results point out that accelerator-99Mo is of limited interest for a possible massive production because of the quite low specific activity with respect to reactor-99Mo. Accelerator-Tc99m quality parameters (i.e., radionuclidic purity (RNP), isotopic purity (IP), and specific activities) calculated are instead quite close to the generator-Tc. Calculations at 15, 20, and 25 MeV have thus been performed to assess the best operative irradiation condition for Tc99m production while minimizing both the short-lived and long-lived Tc contaminant radionuclides. Although present in minimum quantities, Tc contaminants may indeed have an impact either on the pharmaceutical labeling procedures or on contributing to patient radiation dose during the diagnostic procedures.