Physics and Imaging in Radiation Oncology (Oct 2020)
Using prediction models to evaluate magnetic resonance image guided radiation therapy plans
Abstract
Comprehensive analysis of daily, online adaptive plan quality and safety in magnetic resonance imaging (MRI) guided radiation therapy is critical to its widespread use. Artificial neural network models developed with offline plans created after simulation were used to analyze and compare online plans that were adapted and reoptimized in real time prior to treatment. Roughly one third of 60Co adapted plans were of inferior quality relative to fully optimized, offline plans, but MRI-linac adapted plans were essentially equivalent to offline plans. The models also enabled clear justification that MRI-linac plans are superior to 60Co in an overwhelming majority of cases.