Cancer Cell International (May 2024)

PD-L1 intrinsically promotes the proliferation of breast cancer cells through the SKP2-p27/p21 axis

  • Marwa Elfoly,
  • Jumanah Y. Mirza,
  • Ayodele Alaiya,
  • Amal A. Al-Hazzani,
  • Asma Tulbah,
  • Monther Al-Alwan,
  • Hazem Ghebeh

DOI
https://doi.org/10.1186/s12935-024-03354-w
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background PD-L1 intrinsically promotes tumor progression through multiple mechanisms, which potentially leads to resistance to anti-PD-1/PD-L1 therapies. The intrinsic effect of PD-L1 on breast cancer (BC) cell proliferation has not been fully elucidated. Methods we used proteomics, gene expression knockdown (KD), quantitative immunofluorescence (qIF), western blots, functional assays including colony-forming assay (CFA) and real-time cell analyzer (RTCA), and in vivo data using immunohistochemistry in breast cancer patients. Results PD-L1 promoted BC cell proliferation by accelerating cell cycle entry at the G1-to-S phase transition. Global proteomic analysis of the differentially expressed nuclear proteins indicated the involvement of several proliferation-related molecules, including p21CIP1/WAF1. Western blotting and qIF demonstrated the higher expression of SKP2 and the lower expression of p21CIP1/WAF1 and p27Kip1 in PD-L1 expressing (PD-L1pos) cells as compared to PD-L1 KD (PD-L1KD) cells. Xenograft-derived cells and the TCGA BC dataset confirmed this relationship in vivo. Functionally, CFA and RTCA demonstrated the central role of SKP2 in promoting PD-L1-mediated proliferation. Finally, immunohistochemistry in 74 breast cancer patients confirmed PD-L1 and SKP-p21/p27 axis relationship, as it showed a highly statistically significant correlation between SKP2 and PD-L1 expression (p < 0.001), and both correlated significantly with the proliferation marker Ki-67 (p < 0.001). On the other hand, there was a statistically significant inverse relationship between PD-L1 and p21CIP1/WAF1 expression (p = 0.005). Importantly, double negativity for p21CIP1/WAF1 and p27Kip1 correlated significantly with PD-L1 (p < 0.001), SKP2 (p = 0.002), and Ki-67 (p = 0.002). Conclusions we have demonstrated the role of the SKP2-p27/p21 axis in intrinsic PD-L1-enhanced cell cycle progression. Inhibitors of SKP2 expression can alleviate resistance to ICPIs.

Keywords