Heliyon (Feb 2024)

Induced knockdown of Mg-odr-1 and Mg-odr-3 perturbed the host seeking behavior of Meloidogyne graminicola in rice

  • Tushar K. Dutta,
  • Voodikala S. Akhil,
  • Artha Kundu,
  • Manoranjan Dash,
  • Victor Phani,
  • Anil Sirohi,
  • Vishal S. Somvanshi

Journal volume & issue
Vol. 10, no. 4
p. e26384

Abstract

Read online

Root-knot nematode Meloidogyne graminicola is one of the most destructive plant parasites in upland as well as direct seeded rice. As an integral part of nematode biology, host finding behavior involves perceiving and responding to different chemical cues originating from the rhizosphere. A sustainable management tactic may include retardation of nematode chemoreception that would impair them to detect and discriminate the host stimuli. Deciphering the molecular basis of nematode chemoreception is vital to identify chokepoints for chemical or genetic interventions. However, compared to the well-characterized chemoreception mechanism in model nematode Caenorhabditis elegans, plant nematode chemoreception is yet underexplored. Herein, the full-length cDNA sequences of two chemotaxis-related genes (Mg-odr-1 and Mg-odr-3) were cloned from M. graminicola. Both the genes were markedly upregulated in the early developmental stages of M. graminicola suggesting their involvement in host finding processes. RNAi-induced independent knockdown of Mg-odr-1 and Mg-odr-3 caused behavioral aberration in second-stage juveniles of M. graminicola which in turn perturbed the nematodes' host finding ability and parasitic success inside rice roots. Additionally, nematodes’ chemotactic response to different host root exudates, volatile and nonvolatile compounds was affected. Our results demonstrating the role of specific chemosensory genes in modulating M. graminicola host seeking behavior can enrich the existing knowledge of plant nematode chemoreception mechanism, and these genes can be targeted for novel nematicide development or in planta RNAi screens.

Keywords