Genetics and Molecular Biology (Sep 2020)

Transcriptomic evidences of local thermal adaptation for the native fish Colossoma macropomum (Cuvier, 1818)

  • Luciana Mara Fé-Gonçalves,
  • José Deney Alves Araújo,
  • Carlos Henrique dos Anjos dos Santos,
  • Vera Maria Fonseca de Almeida-Val

DOI
https://doi.org/10.1590/1678-4685-gmb-2019-0377
Journal volume & issue
Vol. 43, no. 3

Abstract

Read online Read online

Abstract Brazil has five climatically distinct regions, with an annual average temperature difference up to 14 ºC between the northern and southern extremes. Environmental variation of this magnitude can lead to new genetic patterns among farmed fish populations. Genetically differentiated populations of tambaqui (Colossoma macropomumCuvier, 1818), an important freshwater fish for Brazilian continental aquaculture, may be associated with regional adaptation. In this study, we selected tambaquis raised in two thermally distinct regions, belonging to different latitudes, to test this hypothesis. De novo transcriptome analysis was performed to compare the significant differences of genes expressed in the liver of juvenile tambaqui from a northern population (Balbina) and a southeastern population (Brumado). In total, 2,410 genes were differentially expressed (1,196 in Balbina and 1,214 in Brumado). Many of the genes are involved in a multitude of biological functions such as biosynthetic processes, homeostasis, biorhythm, immunity, cell signaling, ribosome biogenesis, modification of proteins, intracellular transport, structure/cytoskeleton, and catalytic activity. Enrichment analysis based on biological networks showed a different protein interaction profile for each population, whose encoding genes may play potential functions in local thermal adaptation of fish to their respective farming environments.

Keywords