Future Journal of Pharmaceutical Sciences (Aug 2024)

The role of Shigella spp. in propagating bacillary dysentery in humans and the prominence of nanotechnology in disease prevention

  • El Bethel Lalthavel Hmar,
  • Sujata Paul,
  • Hemanta Kumar Sharma

DOI
https://doi.org/10.1186/s43094-024-00676-4
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Shigellosis, also known as bacillary dysentery, is an acute infection of the intestine. The symptoms can vary from mild watery diarrhoea to severe inflammatory bacillary dysentery, which is characterized by fever, intense abdominal cramps, and the presence of blood and mucus in the stools. While the disease typically resolves on its own, it can become life-threatening in immunocompromised individuals or in the absence of adequate medical care. Main body of the abstract Shigella is the primary cause of bacillary dysentery worldwide. It is comprised of four distinct species—S. dysenteriae, S. flexneri, S. boydii, and S. sonnei—each with unique genomic characteristics and disease-causing abilities. Shigella spp. have developed resistance to multiple drugs and have also adapted well to the gut environment over time. They have become well-suited to infecting the human gut epithelial cells and causing dysentery. Consequently, numerous studies have investigated the potential application of nanotechnology in the treatment of shigellosis by leveraging its capability for drug delivery and targeted therapy, thereby improving effectiveness while reducing side effects. Short conclusion It is crucial to maintain ongoing surveillance and develop new strategies to effectively manage this issue. In this review, we shed light on the present comprehension of distinct Shigella spp. and their potential contribution to the pathogenesis of shigellosis, along with their interaction with the gut microbiota. We also provide insight into how nanotechnology may be a major factor in preventing shigellosis in the future.

Keywords