PLoS ONE (Jan 2022)

Combining DNA and HPTLC profiles to differentiate a pain relief herb, Mallotus repandus, from plants sharing the same common name, "Kho-Khlan".

  • Kannika Thongkhao,
  • Chayapol Tungphatthong,
  • Vipawee Pichetkun,
  • Suthathip Gaewtongliam,
  • Worakorn Wiwatcharakornkul,
  • Suchada Sukrong

DOI
https://doi.org/10.1371/journal.pone.0268680
Journal volume & issue
Vol. 17, no. 6
p. e0268680

Abstract

Read online

The pain relief formula "Ya Pa Som Kho-Khlan (YPSKK)" or "ยาผสมโคคลาน" in Thai is officially recorded in the Natural List of Essential Medicines (NLEM) of Thailand. The main component is Mallotus repandus (Willd.) Müll. Arg.; however, Anamirta cocculus (L.) Wight & Arn and Croton caudatus Gleiseler share the same common name: "Kho-Khlan". Confused usage of A. cocculus or C. caudatus can have effects via toxicity or unsuccessful treatment. This study aimed to combine a high-performance thin-layer chromatography (HPTLC) technique and DNA barcoding coupled with high-resolution melting (Bar-HRM) to differentiate M. repandus from the other two species. The M. repandus extract exhibited a distinct HPTLC profile that could be used to differentiate it from the others. DNA barcodes of the rbcL, matK, ITS and psbA-trnH intergenic spacer regions of all the plants were established to assist HPTLC analysis. The rbcL region was selected for Bar-HRM analysis. PCR amplification was performed to obtain 102 bp amplicons encompassing nine polymorphic nucleotides. The amplicons were subjected to HRM analysis to obtain melting curve profiles. The melting temperatures (Tm) of authentic A. cocculus (A), C. caudatus (C) and M. repandus (M) were separated at 82.03±0.09°C, 80.93±0.04°C and 80.05±0.07°C, respectively. The protocol was applied to test crude drugs (CD1-6). The HPTLC profiles of CD2-6 showed distinct bands of M. repandus, while CD1 showed unclear band results. The Bar-HRM method was applied to assist the HPTLC and indicated that CD1 was C. caudatus. While ambiguous melting curves from the laboratory-made formulae were obtained, HPTLC analysis helped reveal distinct patterns for the identification of the plant species. The combination of HPTLC and Bar-HRM analysis could be a tool for confirming the identities of plant species sharing the same name, especially for those whose sources are multiple and difficult to identify by either chemical or DNA techniques.