Nature Communications (Apr 2022)

Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities

  • Dawn G. L. Thean,
  • Hoi Yee Chu,
  • John H. C. Fong,
  • Becky K. C. Chan,
  • Peng Zhou,
  • Cynthia C. S. Kwok,
  • Yee Man Chan,
  • Silvia Y. L. Mak,
  • Gigi C. G. Choi,
  • Joshua W. K. Ho,
  • Zongli Zheng,
  • Alan S. L. Wong

DOI
https://doi.org/10.1038/s41467-022-29874-5
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 14

Abstract

Read online

Screening combinatorial mutants is too massive for wet-lab experiment alone. Here the authors present a machine learning-coupled combinatorial mutagenesis approach to vastly reduce experimental burden for engineering Cas9 genome editing enzymes.