The Journal of Reproduction and Development (Jun 2022)
5-Aminolevulinic acid combined with sodium ferrous citrate mitigates effects of heat stress on bovine oocyte developmental competence
Abstract
High summer temperatures have deleterious effects on oocyte developmental competence. The antioxidant and autophagy-related properties of 5-aminolevulinic acid (5-ALA) gives the compound a broad range of biological activities. This study aimed to evaluate the effects of: 1) a high temperature-humidity index (THI) on the developmental competence of bovine oocytes, and 2) 5-ALA administration in combination with sodium ferrous citrate (SFC) during in vitro maturation (IVM) on bovine oocyte developmental competence evaluated at high THI. Bovine ovaries were collected from a local slaughterhouse at moderate environmental temperature (MT; THI of 56.2) and high environmental temperature (HT; THI of 76.7) periods; cumulus-oocyte complexes (COCs) were aspirated from medium-sized follicles, matured in vitro for 22 h, fertilized, and cultured for 10 days. For COCs collected during the HT period, 0 (control), 0.01, 0.1, 0.5, or 1 µM 5-ALA was added to the maturation medium in combination with SFC at a molar ratio of 1:0.125. The results showed that HT adversely affected blastocyst and hatching rates compared with MT. Adding 5-ALA/SFC (1 µM/0.125 µM) to the maturation medium of oocytes collected during the HT period improved cumulus cell expansion and blastocyst rates compared with the no-addition control. In conclusion, this study showed that high THI can disrupt bovine oocyte developmental competence. Adding 5-ALA to SFC ameliorates this negative effect of heat stress and improves subsequent embryo development.
Keywords