E3S Web of Conferences (Jan 2018)

3D numerical simulation of flow field with incompletely flaring gate pier in large unit discharge and deep tail water project

  • Zhao Zhou,
  • Junxing Wang

DOI
https://doi.org/10.1051/e3sconf/20183803044
Journal volume & issue
Vol. 38
p. 03044

Abstract

Read online

Limited by large unit discharge above the overflow weir and deep tail water inside the stilling basin, the incoming flow inside stilling basin is seriously short of enough energy dissipation and outgoing flow still carries much energy with large velocity, bound to result in secondary hydraulic jump outside stilling basin and scour downstream river bed. Based on the RNG k-ε turbulence model and the VOF method, this paper comparatively studies flow field between the conventional flat gate pier program and the incompletely flaring gate pier program to reveal energy dissipation mechanism of incomplete flaring gate pier. Results show that incompletely flaring gate pier can greatly promote the longitudinally stretched water jet to laterally diffuse and collide in the upstream region of stilling basin due to velocity gradients between adjacent inflow from each chamber through shrinking partial overflow flow chamber weir chamber, which would lead to large scale vertical axis vortex from the bottom to the surface and enhance mutual shear turbulence dissipation. This would significantly increase energy dissipation inside stilling basin to reduce outgoing velocity and totally solve the common hydraulic problems in large unit discharge and deep tail water projects.