The Astrophysical Journal Letters (Jan 2023)
Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array
- Daniel J. Reardon,
- Andrew Zic,
- Ryan M. Shannon,
- George B. Hobbs,
- Matthew Bailes,
- Valentina Di Marco,
- Agastya Kapur,
- Axl F. Rogers,
- Eric Thrane,
- Jacob Askew,
- N. D. Ramesh Bhat,
- Andrew Cameron,
- Małgorzata Curyło,
- William A. Coles,
- Shi Dai,
- Boris Goncharov,
- Matthew Kerr,
- Atharva Kulkarni,
- Yuri Levin,
- Marcus E. Lower,
- Richard N. Manchester,
- Rami Mandow,
- Matthew T. Miles,
- Rowina S. Nathan,
- Stefan Osłowski,
- Christopher J. Russell,
- Renée Spiewak,
- Songbo Zhang,
- Xing-Jiang Zhu
Affiliations
- Daniel J. Reardon
- ORCiD
- Centre for Astrophysics and Supercomputing, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia ; [email protected]; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Hawthorn VIC 3122, Australia
- Andrew Zic
- ORCiD
- Australia Telescope National Facility, CSIRO, Space and Astronomy , P.O. Box 76, Epping, NSW 1710, Australia ; [email protected]; Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University , NSW 2109, Australia
- Ryan M. Shannon
- ORCiD
- Centre for Astrophysics and Supercomputing, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia ; [email protected]; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Hawthorn VIC 3122, Australia
- George B. Hobbs
- ORCiD
- Australia Telescope National Facility, CSIRO, Space and Astronomy , P.O. Box 76, Epping, NSW 1710, Australia ; [email protected]
- Matthew Bailes
- ORCiD
- Centre for Astrophysics and Supercomputing, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia ; [email protected]; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Hawthorn VIC 3122, Australia
- Valentina Di Marco
- ORCiD
- School of Physics and Astronomy, Monash University , VIC 3800, Australia; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Clayton VIC 3800, Australia
- Agastya Kapur
- ORCiD
- Australia Telescope National Facility, CSIRO, Space and Astronomy , P.O. Box 76, Epping, NSW 1710, Australia ; [email protected]; Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University , NSW 2109, Australia
- Axl F. Rogers
- Institute for Radio Astronomy & Space Research, Auckland University of Technology , Private Bag 92006, Auckland 1142, New Zealand
- Eric Thrane
- ORCiD
- School of Physics and Astronomy, Monash University , VIC 3800, Australia; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Clayton VIC 3800, Australia
- Jacob Askew
- ORCiD
- Centre for Astrophysics and Supercomputing, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia ; [email protected]; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Hawthorn VIC 3122, Australia
- N. D. Ramesh Bhat
- ORCiD
- International Centre for Radio Astronomy Research, Curtin University , Bentley, WA 6102, Australia
- Andrew Cameron
- ORCiD
- Centre for Astrophysics and Supercomputing, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia ; [email protected]; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Hawthorn VIC 3122, Australia
- Małgorzata Curyło
- ORCiD
- Astronomical Observatory, University of Warsaw , Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
- William A. Coles
- ORCiD
- Electrical and Computer Engineering, University of California at San Diego , La Jolla, California, USA
- Shi Dai
- ORCiD
- School of Science, Western Sydney University , Locked Bag 1797, Penrith South DC, NSW 2751, Australia
- Boris Goncharov
- ORCiD
- Gran Sasso Science Institute (GSSI) , I-67100 L’Aquila, Italy; INFN, Laboratori Nazionali del Gran Sasso , I-67100 Assergi, Italy
- Matthew Kerr
- ORCiD
- Space Science Division, US Naval Research Laboratory , 4555 Overlook Ave SW, Washington DC 20375, USA
- Atharva Kulkarni
- ORCiD
- Centre for Astrophysics and Supercomputing, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia ; [email protected]; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Hawthorn VIC 3122, Australia
- Yuri Levin
- ORCiD
- School of Physics and Astronomy, Monash University , VIC 3800, Australia; Physics Department and Columbia Astrophysics Laboratory, Columbia University , 538 West 120th Street, New York, NY 10027, USA; Center for Computational Astrophysics , Flatiron Institute, 162 5th Ave, NY10011, USA
- Marcus E. Lower
- ORCiD
- Australia Telescope National Facility, CSIRO, Space and Astronomy , P.O. Box 76, Epping, NSW 1710, Australia ; [email protected]
- Richard N. Manchester
- ORCiD
- Australia Telescope National Facility, CSIRO, Space and Astronomy , P.O. Box 76, Epping, NSW 1710, Australia ; [email protected]
- Rami Mandow
- ORCiD
- Australia Telescope National Facility, CSIRO, Space and Astronomy , P.O. Box 76, Epping, NSW 1710, Australia ; [email protected]; Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University , NSW 2109, Australia
- Matthew T. Miles
- ORCiD
- Centre for Astrophysics and Supercomputing, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia ; [email protected]; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Hawthorn VIC 3122, Australia
- Rowina S. Nathan
- ORCiD
- School of Physics and Astronomy, Monash University , VIC 3800, Australia; OzGrav: The Australian Research Council Centre of Excellence for Gravitational Wave Discovery , Clayton VIC 3800, Australia
- Stefan Osłowski
- ORCiD
- Manly Astrophysics , 15/41-42 East Esplanade, Manly, NSW 2095, Australia
- Christopher J. Russell
- ORCiD
- CSIRO Scientific Computing, Australian Technology Park , Locked Bag 9013, Alexandria, NSW 1435, Australia
- Renée Spiewak
- ORCiD
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester , Manchester M13 9PL, UK
- Songbo Zhang
- ORCiD
- Australia Telescope National Facility, CSIRO, Space and Astronomy , P.O. Box 76, Epping, NSW 1710, Australia ; [email protected]; Purple Mountain Observatory, Chinese Academy of Sciences , Nanjing 210008, People's Republic of China
- Xing-Jiang Zhu
- ORCiD
- Advanced Institute of Natural Sciences, Beijing Normal University , Zhuhai 519087, People's Republic of China
- DOI
- https://doi.org/10.3847/2041-8213/acdd02
- Journal volume & issue
-
Vol. 951,
no. 1
p. L6
Abstract
Pulsar timing arrays aim to detect nanohertz-frequency gravitational waves (GWs). A background of GWs modulates pulsar arrival times and manifests as a stochastic process, common to all pulsars, with a signature spatial correlation. Here we describe a search for an isotropic stochastic gravitational-wave background (GWB) using observations of 30 millisecond pulsars from the third data release of the Parkes Pulsar Timing Array (PPTA), which spans 18 yr. Using current Bayesian inference techniques we recover and characterize a common-spectrum noise process. Represented as a strain spectrum ${h}_{c}=A{(f/1{\mathrm{yr}}^{-1})}^{\alpha }$ , we measure $A={3.1}_{-0.9}^{+1.3}\times {10}^{-15}$ and α = −0.45 ± 0.20, respectively (median and 68% credible interval). For a spectral index of α = −2/3, corresponding to an isotropic background of GWs radiated by inspiraling supermassive black hole binaries, we recover an amplitude of $A={2.04}_{-0.22}^{+0.25}\times {10}^{-15}$ . However, we demonstrate that the apparent signal strength is time-dependent, as the first half of our data set can be used to place an upper limit on A that is in tension with the inferred common-spectrum amplitude using the complete data set. We search for spatial correlations in the observations by hierarchically analyzing individual pulsar pairs, which also allows for significance validation through randomizing pulsar positions on the sky. For a process with α = −2/3, we measure spatial correlations consistent with a GWB, with an estimated false-alarm probability of p ≲ 0.02 (approx. 2 σ ). The long timing baselines of the PPTA and the access to southern pulsars will continue to play an important role in the International Pulsar Timing Array.
Keywords
- Gravitational waves
- Gravitational wave astronomy
- Millisecond pulsars
- Pulsar timing method
- Bayesian statistics