International Islamic University Malaysia Engineering Journal (Jul 2024)

Memetic Alligator Optimization Algorithm for Optimal Thermoregulatory Control in Piping Systems

  • Weng-Hooi Tan,
  • Noramalina Abdullah,
  • Junita Mohamad-Saleh

DOI
https://doi.org/10.31436/iiumej.v25i2.3044
Journal volume & issue
Vol. 25, no. 2

Abstract

Read online

Applying optimization techniques to control systems remains a challenging task. Control system technology is emerging rapidly due to the high demands for commercialization in engineering and industrial fields, but existing optimization techniques are considered weak to cope with increasingly complex control problems. More powerful optimization techniques are urgently needed to catch up with the prerequisites for optimal control. Hence, this research is dedicated to the development of an improved optimization algorithm to solve the optimal thermoregulatory control problem for piping systems in a more efficient manner. As a research outcome, the Memetic Alligator Optimization (MeAgtrO) algorithm is proposed. On top of the mathematical hunting and relocating mechanisms, MeAgtrO adds several evolutionary operators that replicate satiety awareness, mating, generational alternation, and dispersed hunting. Unlike the standard optimizer, which only emphasizes global and local search transitions, these improved variants give the ability to shuffle, swap, replace, and disperse agent information for greater flexibility. Upon application to a simulated piping system to optimally control thermoregulation processes, MeAgtrO statistically outperformed the other compared algorithms, showing 100% accuracy, 99.99% precision, and 99.99% robustness in minimizing the tracking error, response time, and equipment burden of the system. MeAgtrO has been shown to have high processing speed for optimal application control, which corresponds to its superior convergence speed to stabilize at 40% of iterations. While showing satisfactory clustering properties, MeAgtrO also demonstrated the best step response with a rise time of 0.40s, settling time of 0.99s, 0 tracking error, 0% overshoot, and 0% undershoot. ABSTRAK: Penerapan teknik optimasi pada sistem kawalan adalah tugas mencabar. Teknologi sistem kawalan berkembang pesat disebabkan oleh permintaan tinggi bagi komersialisasi dalam bidang kejuruteraan dan industri, tetapi teknik optimasi sedia ada dianggap lemah dalam mengatasi masalah kawalan yang semakin kompleks. Teknik optimasi lebih kuat diperlukan dengan segera untuk memenuhi prasyarat kawalan optimal. Oleh itu, penyelidikan ini bertujuan bagi membangunkan algoritma optimasi yang lebih baik bagi menyelesaikan masalah kawalan termoregulator optimum pada sistem paip dengan lebih cekap. Penyelidikan ini mencadangkan algoritma Memetic Alligator Optimization (MeAgtrO). Selain dari mekanisme pemindahan dan pemburuan matematik, MeAgtrO memiliki beberapa pengendali evolusinari yang menggandakan kesedaran kenyang, mengawan, alternasi generasi, dan pemburuan tersebar. Berbeza dengan pengoptimuman standard, penekanan hanya pada peralihan global dan carian tempatan, ini membaiki varian dengan memberikan keupayaan menyusun semula, menukar, mengganti, dan menyebar maklumat ejen bagi fleksibiliti yang lebih besar. Apabila digunakan pada sistem paip bersimulasi bagi mengawal proses termoregulasi secara optimum, MeAgtrO secara statistik mengatasi algoritma lain, menunjukkan ketepatan 100%, kejituan 99.99%, dan kekuatan 99.99% dalam mengurangkan kesilapan pengesanan, masa tindak balas, dan beban sistem peralatan. MeAgtrO telah terbukti mempunyai kelajuan pemprosesan yang tinggi bagi aplikasi kawalan optimum, sejajar dengan kelajuan konvergensi yang lebih bagus bagi menstabilkan iterasi 40%. Di samping menunjukkan sifat kelompok yang memuaskan, MeAgtrO juga memiliki respons langkah terbaik kenaikan masa 0.40s, masa penyelesaian 0.99s, ralat pengesanan 0%, lebih sasaran 0%, dan kurang sasaran 0%.

Keywords