Cailiao gongcheng (Aug 2019)

Orientation dependence of strain stored energy and its effect on recrystallization texture in non-oriented silicon steel

  • CHU Shuang-jie,
  • SHEN Kan-yi,
  • SHA Yu-hui,
  • CHEN Xi

DOI
https://doi.org/10.11868/j.issn.1001-4381.2018.000541
Journal volume & issue
Vol. 47, no. 8
pp. 147 – 153

Abstract

Read online

The crystal plasticity finite element simulation and experiment were used to study the orientation flow and strain stored energy accumulation of different initial texture components during cold rolling in non-oriented silicon steel. The results show that strong α and γ as well as weak λ deformation textures are formed after cold rolling. The recrystallization texture consists of γ, α, η and λ components, whose orientation densities are dependent on cold rolling reduction. With the increase of cold rolling reduction, λ recrystallization texture increases gradually, η recrystallization texture increases first and then decreases, γ recrystallization texture decreases first and then increases, while α recrystallization texture is weakened slightly. The strain stored energy during cold rolling has a significant dependence on initial grain orientation that the initial γ orientation has a similar or evidently higher strain stored energy accumulation rate below or above 50% reduction compared with initial α orientation, while λ keeps the lowest strain stored energy accumulation rate during cold rolling. Particularly, the different initial orientations rotating to an identical deformed orientation may cause an obvious difference in strain stored energy accumulation rate. The development of recrystallization texture in non-oriented silicon steel is determined by orientation flow and strain stored energy accumulation in various texture components during cold rolling.

Keywords