Molecules (Jun 2018)

Microbial Hydrolysis of Racemic β-Aryl-γ-ethylidene-γ-lactones and Antifeedant Activity of the Products against Alphitobius diaperinus Panzer

  • Andrzej Skrobiszewski,
  • Witold Gładkowski,
  • Marcelina Mazur,
  • Maryla Szczepanik,
  • Gabriela Maciejewska,
  • Czesław Wawrzeńczyk

DOI
https://doi.org/10.3390/molecules23071516
Journal volume & issue
Vol. 23, no. 7
p. 1516

Abstract

Read online

Hydrolysis of (±)-β-aryl-γ-ethylidene-γ-lactones by fungal strain Aspergillus ochraceus AM370 afforded (−)-(S)-γ-ethylidene-γ-lactones 2a–d and (+)-(R)-γ-ketoacids 3a–d. Enantiomeric purity of the unreacted lactones was strictly related to a size of an aryl substituent at C-4 of γ-lactone ring, with the highest ee (77%) obtained for the (−)-(S)-γ-ethylidene-γ-lactone possessing unsubstituted benzene ring (2a) and the lowest one (15%) determined for the (−)-(S)-γ-ethylidene-γ-lactone with bulky 1,3-benzodioxole system (2d). Lactones 2a–d, both racemic and enantiomerically enriched, as well as products of their hydrolysis showed varying degrees of feeding deterrent activity against lesser mealworm, Alphitobius diaperinus Panzer, which depended on the structure of the compound and the developmental stage of the lesser mealworm. In the case of adults, more active were γ-lactones 2a–d, compared with ketoacids 3a–d. Only in the case of lactone 2a was the effect of configuration of stereogenic center on the activity found. Particularly strong deterrents against this stage (T > 180) were racemic and (−)-(S)-γ-ethylidene-γ-lactone with p-methoxysubstituted phenyl ring (2c).

Keywords