Atmospheric Chemistry and Physics (Sep 2024)

Beyond self-healing: stabilizing and destabilizing photochemical adjustment of the ozone layer

  • A. Match,
  • E. P. Gerber,
  • S. Fueglistaler

DOI
https://doi.org/10.5194/acp-24-10305-2024
Journal volume & issue
Vol. 24
pp. 10305 – 10322

Abstract

Read online

The ozone layer is often noted to exhibit self-healing, whereby depletion of ozone aloft induces ozone increases below, explained as resulting from enhanced ozone production due to the associated increase in ultraviolet (UV) radiation below. Similarly, ozone enhancement aloft can reduce ozone below (reverse self-healing). This paper considers self-healing and reverse self-healing to manifest a general mechanism we call photochemical adjustment, whereby ozone perturbations lead to a downward cascade of anomalies in UV and ozone. Conventional explanations for self-healing imply that photochemical adjustment is stabilizing, damping perturbations towards the surface. However, photochemical adjustment can be destabilizing if the enhanced UV disproportionately increases the ozone sink, as can occur if the enhanced UV photolyzes ozone to produce atomic oxygen, which speeds up catalytic destruction of ozone. We analyze photochemical adjustment in two linear ozone models (Cariolle v2.9 and LINOZ), finding that (1) photochemical adjustment is destabilizing above 40 km in the tropical stratosphere and (2) self-healing often represents only a small fraction of the total photochemical stabilization. The destabilizing regime above 40 km is reproduced in a much simpler model: the Chapman cycle augmented with destruction of O and O3 by generalized catalytic cycles and transport (the Chapman+2 model). The Chapman+2 model reveals that photochemical destabilization occurs where the ozone sink is more sensitive than the source to perturbations in overhead column ozone, which is found to occur when the window of overlapping absorption by O2 and O3 is optically unsaturated, i.e., when overhead slant column ozone is below approximately 1018 molec. cm−2.