International Journal of Molecular Sciences (Sep 2020)

Dihydromyricetin Improves Endothelial Dysfunction in Diabetic Mice via Oxidative Stress Inhibition in a SIRT3-Dependent Manner

  • Yu-Yun Hua,
  • Yue Zhang,
  • Wei-Wei Gong,
  • Yue Ding,
  • Jie-Ru Shen,
  • Hua Li,
  • Yun Chen,
  • Guo-Liang Meng

DOI
https://doi.org/10.3390/ijms21186699
Journal volume & issue
Vol. 21, no. 18
p. 6699

Abstract

Read online

Dihydromyricetin (DHY), a flavonoid component isolated from Ampelopsis grossedentata, exerts versatile pharmacological activities. However, the possible effects of DHY on diabetic vascular endothelial dysfunction have not yet been fully elucidated. In the present study, male C57BL/6 mice, wild type (WT) 129S1/SvImJ mice and sirtuin 3 (SIRT3) knockout (SIRT3-/-) mice were injected with streptozotocin (STZ, 60 mg/kg/day) for 5 consecutive days. Two weeks later, DHY were given at the doses of 250 mg/kg by gavage once daily for 12 weeks. Fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) level, endothelium-dependent relaxation of thoracic aorta, reactive oxygen species (ROS) production, SIRT3, and superoxide dismutase 2 (SOD2) protein expressions, as well as mitochondrial Deoxyribonucleic Acid (mtDNA) copy number, in thoracic aorta were detected. Our study found that DHY treatment decreased FBG and HbA1c level, improved endothelium-dependent relaxation of thoracic aorta, inhibited oxidative stress and ROS production, and enhanced SIRT3 and SOD2 protein expression, as well as mtDNA copy number, in thoracic aorta of diabetic mice. However, above protective effects of DHY were unavailable in SIRT3-/- mice. The study suggested DHY improved endothelial dysfunction in diabetic mice via oxidative stress inhibition in a SIRT3-dependent manner.

Keywords