Insects (Nov 2024)

Predicted Spatial Patterns of Suitable Habitats for <i>Troides aeacus</i> Under Different Climate Scenarios

  • Biyu Liu,
  • Xinqi Deng,
  • Zhiqian Liu,
  • Xinju Wei,
  • Honghua Zhang,
  • Danping Xu,
  • Zhihang Zhuo

DOI
https://doi.org/10.3390/insects15110901
Journal volume & issue
Vol. 15, no. 11
p. 901

Abstract

Read online

Troides aeacus is the largest butterfly in China and is highly valued for its ornamental beauty. Due to T. aeacus being classified as a national second-class protected species in China, studying its spatial distribution is crucial for developing effective conservation measures. In this study, a total of 490 distribution points were obtained, and the potential distribution areas of the golden-sheathed T. aeacus were analyzed by using the maximum entropy model (MaxEnt) based on three different greenhouse gas emission scenarios, namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5, in combination with nine important environmental variables. The results indicate that temperature and precipitation are the primary environmental factors influencing the suitable habitat of T. aeacus, with key variables including the minimum temperature of the coldest month (bio6), temperature annual range (bio7), mean temperature of the warmest quarter (bio10), annual precipitation (bio12), precipitation of the coldest quarter (bio19), and slope. The height distribution of T. aeacus in my country is in the area south of the Huaihe River in the Qinling Mountains, with a total area of 270.96 × 104 km2, accounting for 28.23% of the total area of China. According to future climate change conditions, as climate warming progresses, both low- and high-suitability areas show an expansion trend in most scenarios, particularly under the SSP5-8.5 scenario, where highly suitable areas increase significantly while moderately suitable areas gradually shrink. To address future climate change, conservation strategies should focus on protecting highly suitable areas and strengthening the management of marginal habitats to enhance the adaptability and survival chances of T. aeacus.

Keywords