Scientific Reports (May 2022)
X-ray nanoimaging of a transversely embedded carbon fiber in epoxy matrix under static and cyclic loads
Abstract
Abstract The initial stage of fatigue failure has not been thoroughly clarified for carbon fiber reinforced plastics (CFRPs). Although the initiation of fatigue cracks has been regarded to be interfacial debonding between the carbon fiber and polymer matrix, their detection among numerous carbon fibers, whose diameter is only 7 µm, is extremely difficult. In this study, a single carbon fiber was transversely embedded in a dumbbell-shaped epoxy sample to focus on the interfacial debonding and was observed using synchrotron radiation (SR) X-ray computed tomography (CT). A tabletop fatigue testing machine driven by a piezoelectric actuator was developed to apply static and cyclic loads along the beamline. SR X-ray multiscale CT imaging was conducted by switching between an absorption-contrast projection method (micro-CT) and a phase-contrast imaging-type X-ray microscopic CT (nano-CT). The carbon fiber was entirely captured by micro-CT and then magnified at both ends on the free surfaces. Nano-CT clearly visualized the interfacial debonding under 30 MPa static tensile load and the implication of the coalescence of nano-voids along the interface under 50 MPa. Under cyclic loads, the interfacial debonding gradually progressed under a 8–40 MPa sinusoidal stress after 10,000 cycles, whereas it did not propagate under a stress below 30 MPa.