IEEE Journal of Microwaves (Jan 2024)
Design of a Fully Integrated Power Amplifier at <italic>Ka</italic>-<italic>V</italic> Band for 5G Transceivers
Abstract
A fully integrated millimeter-wave power amplifier has been designed and fabricated using a 0.13 μm SiGe BiCMOS process technology. The design is based on extracting device parasitics and utilizing them in a matching network based on a bandpass topology. This design technique assisted in attaining a wideband performance without using any on-chip inductors or transformers. The amplifier operates over the Ka & V-band ranging from 36 GHz to 53 GHz with a peak saturated power of 17.7 dBm, peak power added efficiency (PAE) of 20.5% and a gain of 19.7 dB at 46 GHz. The performance is also validated with wideband 5G signals of 50 MHz and 100 MHz channel bandwidth using 64-QAM in n262 5G NR FR2 bands (47.2 GHz–48.2 GHz). The digital predistortion is used to linearize the PA in order to qualify the required spectral mask with an error vector magnitude of 2.2%. The proposed design is compact and occupies a chip area of 1.11 mm2, including the pads.
Keywords