Scientific Reports (May 2024)

A novel controllable capacitor commutation based superconducting hybrid direct current breaker

  • Yang Xu,
  • Muhammad Junaid,
  • Mingxue Li,
  • Jinggang Yang,
  • Yang Chen,
  • Mohammed Alkahtani

DOI
https://doi.org/10.1038/s41598-024-61129-9
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Featuring low power loss and high reliability, voltage source converter medium voltage direct current (VSC-MVDC) systems have been widely employed for grid-tied renewable energy applications. To maintain high operational safety, circuit breakers are needed to isolate faulted powerlines by comprehensively considering response speed and installation cost. Research efforts have been put to realizing DC fault isolation by coordinating resistive type superconducting fault current limiter (R-SFCL) and integrated-gate-commutated-thyristor (IGCT) based hybrid DC circuit breaker. In this paper, a controllable current commutation based superconducting DC circuit breaker (CCCB-SDCCB) is proposed. By integrating R-SFCL with IGCT based hybrid DC circuit breakers, the current interrupting capacity can be greatly enlarged with the advantage of low cost and fast speed, and hence the overall cost for suppress large fault currents can be greatly reduced for MVDC systems. In addition, a new current injection circuit branch using H-bridge structure is designed to recycle the residual capacitor voltage from the previous fault stage to trigger the IGCTs without the capacitor pre-charging process. Simulation results show that the fault current can be successfully suppressed from 24.2 to 2.1 kA and fully interrupted within 4.11 ms by the proposed CCCB-SDCCB.