Mathematics (Nov 2021)

Calderón Operator on Local Morrey Spaces with Variable Exponents

  • Kwok-Pun Ho

DOI
https://doi.org/10.3390/math9222977
Journal volume & issue
Vol. 9, no. 22
p. 2977

Abstract

Read online

In this paper, we establish the boundedness of the Calderón operator on local Morrey spaces with variable exponents. We obtain our result by extending the extrapolation theory of Rubio de Francia to the local Morrey spaces with variable exponents. The exponent functions of the local Morrey spaces with the exponent functions are only required to satisfy the log-Hölder continuity assumption at the origin and infinity only. As special cases of the main result, we have Hardy’s inequalities, the Hilbert inequalities and the boundedness of the Riemann–Liouville and Weyl averaging operators on local Morrey spaces with variable exponents.

Keywords