Nanomaterials (May 2024)

Synergistic Effect of ZIF-8 and Pt-Functionalized NiO/In<sub>2</sub>O<sub>3</sub> Hollow Nanofibers for Highly Sensitive Detection of Formaldehyde

  • Lei Zhu,
  • Ze Wang,
  • Jianan Wang,
  • Jianwei Liu,
  • Wei Zhao,
  • Jiaxin Zhang,
  • Wei Yan

DOI
https://doi.org/10.3390/nano14100841
Journal volume & issue
Vol. 14, no. 10
p. 841

Abstract

Read online

A rapid and accurate monitoring of hazardous formaldehyde (HCHO) gas is extremely essential for health protection. However, the high-power consumption and humidity interference still hinder the application of HCHO gas sensors. Hence, zeolitic imidazolate framework-8 (ZIF-8)-loaded Pt-NiO/In2O3 hollow nanofibers (ZPNiIn HNFs) were designed via the electrospinning technique followed by hydrothermal treatment, aiming to enable a synergistic advantage of the surface modification and the construction of a p-n heterostructure to improve the sensing performance of the HCHO gas sensor. The ZPNiIn HNF sensor has a response value of 52.8 to 100 ppm HCHO, a nearly 4-fold enhancement over a pristine In2O3 sensor, at a moderately low temperature of 180 °C, along with rapid response/recovery speed (8/17 s) and excellent humidity tolerance. These enhanced sensing properties can be attributed to the Pt catalysts boosting the catalytic activity, the p-n heterojunctions facilitating the chemical reaction, and the appropriate ZIF-8 loading providing a hydrophobic surface. Our research presents an effective sensing material design strategy for inspiring the development of cost-effective sensors for the accurate detection of indoor HCHO hazardous gas.

Keywords