Journal of Translational Medicine (Jul 2019)

Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4+CD25+Foxp3+ and CD4+CD25−Foxp3+ T cells

  • Magdalena J. Polanczyk,
  • Edwin Walker,
  • Daniel Haley,
  • Bella S. Guerrouahen,
  • Emmanuel T. Akporiaye

DOI
https://doi.org/10.1186/s12967-019-1967-3
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background The pleiotropic cytokine, transforming growth factor (TGF)-β, and CD4+CD25+Foxp3+ regulatory T cells (Tregs) play a critical role in actively suppressing antitumor immune responses. Evidence shows that TGF-β produced by tumor cells promotes tolerance via expansion of Tregs. Our group previously demonstrated that blockade of TGF-β signaling with a small molecule TGF-β receptor I antagonist (SM16) inhibited primary and metastatic tumor growth in a T cell dependent fashion. In the current study, we evaluated the effect of SM16 on Treg generation and function. Methods Using BALB/c, FoxP3eGFP and Rag−/− mice, we performed FACS analysis to determine if SM16 blocked de novo TGF-β-induced Treg generation in vitro and in vivo. CD4+ T cells from lymph node and spleen were isolated from control mice or mice maintained on SM16 diet, and flow cytometry analysis was used to detect the frequency of CD4+CD25−FoxP3+ and CD4+CD25+FoxP3+ T cells. In vitro suppression assays were used to determine the ability to suppress naive T cell proliferation in vitro of both CD4+CD25+FoxP3+ and CD4+CD25−FoxP3+ T cell sub-populations. We then examined whether SM16 diet exerted an inhibitory effect on primary tumor growth and correlated with changes in FoxP3+expression. ELISA analysis was used to measure IFN-γ levels after 72 h co-culture of CD4+CD25+ T cells from tumor-bearing mice on control or SM16 diet with CD4+CD25− T cells from naive donors. Results SM16 abrogates TGF-β-induced Treg generation in vitro but does not prevent global homeostatic expansion of CD4+ T cell sub-populations in vivo. Instead, SM16 treatment causes expansion of a population of CD4+CD25−Foxp3+ Treg-like cells without significantly altering the overall frequency of Treg in lymphoreplete naive and tumor-bearing mice. Importantly, both the CD4+CD25−Foxp3+ T cells and the CD4+CD25+Foxp3+ Tregs in mice receiving SM16 diet exhibited diminished ability to suppress naive T cell proliferation in vitro compared to Treg from mice on control diet. Conclusions These findings suggest that blockade of TGF-β signaling is a potentially useful strategy for blunting Treg function to enhance the anti-tumor response. Our data further suggest that the overall dampening of Treg function may involve the expansion of a quiescent Treg precursor population, which is CD4+CD25−Foxp3+.

Keywords