Archives of Metallurgy and Materials (Mar 2020)

Application of Artificial Neural Networks in the Analysis of Mechanisms Destroying Forging Tools

  • M. Hawryluk,
  • B. Mrzygłód,
  • Z. Gronostajski,
  • M. Głowacki,
  • I. Olejarczyk-Wożeńska

DOI
https://doi.org/10.24425/amm.2019.131114
Journal volume & issue
Vol. vol. 65, no. No 1
pp. 193 – 200

Abstract

Read online

This article discusses the results of studies using the developed artificial neural networks in the analysis of the occurrence of the four main mechanisms destroying the selected forging tools subjected to five different surface treatment variants (nitrided layer, pad welded layer and three hybrid layers, i.e. AlCrTiSiN, Cr/CrN and Cr/AlCrTiN). Knowledge of the forging tool durability, needed in the process of artificial neural network training, was included in the set of training data (about 800 records) derived from long-term comprehensive research carried out under industrial conditions. Based on this set, neural networks with different architectures were developed and the results concerning the intensity of the occurrence of thermal-mechanical fatigue, abrasive wear, mechanical fatigue and plastic deformation were generated for each type of the applied treatment relative to the number of forgings, pressure, friction path and temperature.

Keywords