Cells (Dec 2022)

HDAC6 Inhibition Alleviates Ischemia- and Cisplatin-Induced Acute Kidney Injury by Promoting Autophagy

  • Lang Shi,
  • Zhixia Song,
  • Chenglong Li,
  • Fangjing Deng,
  • Yao Xia,
  • Jing Huang,
  • Xiongfei Wu,
  • Jiefu Zhu

DOI
https://doi.org/10.3390/cells11243951
Journal volume & issue
Vol. 11, no. 24
p. 3951

Abstract

Read online

Histone deacetylase (HDAC) 6 exists exclusively in cytoplasm and deacetylates cytoplasmic proteins such as α-tubulin. HDAC6 dysfunction is associated with several pathological conditions in renal disorders, including UUO-induced fibrotic kidneys and rhabdomyolysis-induced nephropathy. However, the role of HDAC6 in ischemic acute kidney injury (AKI) and the mechanism by which HDAC6 inhibition protects tubular cells after AKI remain unclear. In the present study, we observed that HDAC6 was markedly activated in kidneys subjected to ischemia- and cisplatin (cis)-induced AKI treatment. Pharmacological inhibition of HDAC6 alleviated renal impairment and renal tubular damage after ischemia and cisplatin treatment. HDAC6 dysfunction was associated with decreased acetylation of α-tubulin at the residue of lysine 40 and autophagy. HDAC6 inhibition preserved acetyl-α-tubulin-enhanced autophagy flux in AKI and cultured tubular cells. Genetic ablation of the renal tubular (RT) Atg7 gene or pharmacological inhibition of autophagy suppressed the protective effects of HDAC6. Taken together, our study indicates that HDAC6 contributes to ischemia- and cisplatin-induced AKI by inhibiting autophagy and the acetylation of α-tubulin. These results suggest that HDAC6 could be a potential target for ischemic and nephrotoxic AKI.

Keywords