Foods (Apr 2024)

Detection and Analysis of VOCs in Cherry Tomato Based on GC-MS and GC×GC-TOF MS Techniques

  • Sihui Guan,
  • Chenxu Liu,
  • Zhuping Yao,
  • Hongjian Wan,
  • Meiying Ruan,
  • Rongqing Wang,
  • Qingjing Ye,
  • Zhimiao Li,
  • Guozhi Zhou,
  • Yuan Cheng

DOI
https://doi.org/10.3390/foods13081279
Journal volume & issue
Vol. 13, no. 8
p. 1279

Abstract

Read online

Volatile organic compounds (VOCs) play a significant role in influencing the flavor quality of cherry tomatoes (Solanum lycopersicum var. cerasiforme). The scarcity of systematic analysis of VOCs in cherry tomatoes can be attributed to the constraints imposed by detection technology and other contributing factors. In this study, the cherry tomato cultivar var. ‘Zheyingfen1’ was chosen due to its abundant fruit flavor. Two detection technology platforms, namely the commonly employed headspace solid-phase microextraction—gas chromatography–mass spectrometry (HS-SPME-GC-MS) and the most advanced headspace solid-phase microextraction—full two-dimensional gas chromatography–time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS), were employed in the analysis. The VOCs of cherry tomato cultivar var. ‘Zheyingfen1’ fruits at red ripening stage were detected. A combined total of 1544 VOCs were detected using the two aforementioned techniques. Specifically, 663 VOCs were identified by through the HS-SPME-GC-MS method, 1026 VOCs were identified by through the HS-SPME-GC×GC-TOFMS, and 145 VOCs were identified by both techniques. The identification of β-ionone and (E)-2-nonenal as the principal VOCs was substantiated through the application of the relative odor activity value (rOAV) calculation and subsequent analysis. Based on the varying contribution rates of rOAV, the analysis of sensory flavor characteristics revealed that cherry tomato cultivar var. ‘Zheyingfen1’ predominantly exhibited green and fatty attributes, accompanied by elements of fresh and floral flavor characteristics. In conclusion, our study conducted a comprehensive comparison of the disparities between these two methodologies in detecting VOCs in cherry tomato fruits. Additionally, we systematically analyzed the VOC composition and sensory flavor attributes of the cherry tomato cultivar var. ‘Zheyingfen1’. This research serves as a significant point of reference for investigating the regulatory mechanisms underlying the development of volatile flavor quality in cherry tomatoes.

Keywords