Vaccines (Sep 2024)
Intranasal Immunization with a Recombinant Adenovirus Encoding Multi-Stage Antigens of <i>Mycobacterium tuberculosis</i> Preferentially Elicited CD8<sup>+</sup> T Cell Immunity and Conferred a Superior Protection in the Lungs of Mice than Bacillus Calmette–Guerin
Abstract
The development of a tuberculosis (TB) vaccine is imperative. Employing multi-stage Mycobacterium tuberculosis (Mtb) antigens as targeted antigens represents a critical strategy in establishing an effective novel TB vaccine. In this investigation, we evaluated the immunogenicity and protective efficacy of a recombinant adenovirus vaccine expressing two fusion proteins, Ag85B-ESAT6 (AE) and Rv2031c-Rv2626c (R2), derived from multi-stage antigens of Mtb via intranasal administration in mice. Intranasal delivery of Ad-AE-R2 induced both long-lasting mucosal and systemic immunities, with a preferential elicitation of CD8+ T cell immunity demonstrated by the accumulation and retention of CD8+ T cells in BALF, lung, and spleen, as well as the generation of CD8+ TRM cells in BALF and lung tissues. Compared to subcutaneous immunization with Bacillus Calmette-Guerin (BCG), Ad-AE-R2 provided superior protection against high-dose intratracheal BCG challenge, specifically within the lungs of mice. Our findings support the notion that empowering T cells within the respiratory mucosa is crucial for TB vaccine development while highlighting targeting CD8+ T cell immunity as an effective strategy for optimizing TB vaccines and emphasizing that eliciting systemic memory immunity is also vital for the successful development of a TB mucosal vaccine. Furthermore, our results demonstrate that the BCG challenge serves as a convenient and efficient method to evaluate candidate vaccine efficacy.
Keywords