Animals (Nov 2021)
Genome-Wide Identification of Reference Genes for Reverse-Transcription Quantitative PCR in Goat Rumen
Abstract
As the largest chamber of the ruminant stomach, the rumen not only serves as the principal absorptive surface and nutrient transport pathway from the lumen into the animal, but also plays an important short-chain fatty acid (SCFA) metabolic role in addition to protective functions. Accurate characterization of the gene expression profiles of genes of interest is essential to the exploration of the intrinsic regulatory mechanisms of rumen development in goats. Thus, the selection of suitable reference genes (RGs) is an important prerequisite for real-time quantitative PCR (RT-qPCR). In the present study, 16 candidate RGs were identified from our previous transcriptome sequencing of caprine rumen tissues. The quantitative expressions of the candidate RGs were measured using the RT-qPCR method, and the expression stability of the RGs was assessed using the geNorm, NormFinder, and BestKeeper programs. GeNorm analysis showed that the M values were less than 0.5 for all the RGs except GAPT4, indicating that they were stably expressed in the rumen tissues throughout development. RPS4X and RPS6 were the two most stable RGs. Furthermore, the expressions of two randomly selected target genes (IGF1 and TOP2A), normalized by the selected most stable RGs (RPS4X and RPS6), were consistent with the results of RNA sequencing, while the use of GAPDH and ACTB as RGs resulted in altered profiles. Overall, RPS4X and RPS6 showed the highest expression stability and the lowest coefficients of variation, and could be used as the optimal reference combination for quantifying gene expression in rumen tissues via RT-qPCR analysis.
Keywords