Applied Sciences (May 2023)

Load-Bearing Characteristics of PHC Piles Constructed by the Inner Digging Method Based on Ultimate Load Testing and Numerical Simulation

  • Yiwen Qu,
  • Yi Zhang,
  • Zhitian Wang,
  • Dahai Yang,
  • Jun Shi

DOI
https://doi.org/10.3390/app13095641
Journal volume & issue
Vol. 13, no. 9
p. 5641

Abstract

Read online

This paper studies the load-bearing characteristics of two prestressed high-strength concrete (PHC) pipe piles constructed by the medium mid-digging and hammering methods. The ultimate load tests and numerical simulations of the pipe piles constructed by both methods were carried out to analyze the ultimate lateral resistance, and ultimate resistance performance characteristics of the two pipe piles and the influence of the wall thickness of the pipe piles on the bearing performance. The test results show that the pipe pile constructed by the middle inner digging method has a higher pile quality. The single pile bearing capacity of the pipe pile constructed by the middle inner digging method is 50% higher than that of the common hammering method. The enlarged part of the pile end has an obvious effect on improving the bearing capacity. The settlement of the pipe pile constructed by the middle inner digging method is smaller than that of the hammering method. The large diameter pipe pile constructed by the middle inner digging method usually shows characteristics of the end-bearing pile. The resistance of the pile end accounts for 40–50% of the top load. The numerical simulation results agree with the field test and are compared and discussed. The simulation results show that when the bearing capacity of the pile is provided by the pile side frictional resistance, the influence of the pile wall thickness on the bearing capacity is insignificant. When the top pile load is close to the bearing capacity of the pipe pile, the influence of the pipe pile wall thickness on the bearing capacity is greater.

Keywords