Axioms (Jun 2024)

A Selberg Trace Formula for GL<sub>3</sub>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">F</mi><mi mathvariant="bold-italic">p</mi></msub></mrow></semantics></math></inline-formula>)∖GL<sub>3</sub>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">F</mi><mi mathvariant="bold-italic">q</mi></msub></mrow></semantics></math></inline-formula>)/<i>K</i>

  • Daksh Aggarwal,
  • Asghar Ghorbanpour,
  • Masoud Khalkhali,
  • Jiyuan Lu,
  • Balázs Németh,
  • C Shijia Yu

DOI
https://doi.org/10.3390/axioms13060381
Journal volume & issue
Vol. 13, no. 6
p. 381

Abstract

Read online

In this paper, we prove a discrete analog of the Selberg Trace Formula for the group GL3(Fq). By considering a cubic extension of the finite field Fq, we define an analog of the upper half-space and an action of GL3(Fq) on it. To compute the orbital sums, we explicitly identify the double coset spaces and fundamental domains in our upper half space. To understand the spectral side of the trace formula, we decompose the induced representation ρ=IndΓG1 for G=GL3(Fq) and Γ=GL3(Fp).

Keywords