Scientific Reports (May 2024)
Release dynamics of nanodiamonds created by laser-driven shock-compression of polyethylene terephthalate
- Ben Heuser,
- Armin Bergermann,
- Michael G. Stevenson,
- Divyanshu Ranjan,
- Zhiyu He,
- Julian Lütgert,
- Samuel Schumacher,
- Mandy Bethkenhagen,
- Adrien Descamps,
- Eric Galtier,
- Arianna E. Gleason,
- Dimitri Khaghani,
- Griffin D. Glenn,
- Eric F. Cunningham,
- Siegfried H. Glenzer,
- Nicholas J. Hartley,
- Jean-Alexis Hernandez,
- Oliver S. Humphries,
- Kento Katagiri,
- Hae Ja Lee,
- Emma E. McBride,
- Kohei Miyanishi,
- Bob Nagler,
- Benjamin Ofori-Okai,
- Norimasa Ozaki,
- Silvia Pandolfi,
- Chongbing Qu,
- Philipp Thomas May,
- Ronald Redmer,
- Christopher Schoenwaelder,
- Keiichi Sueda,
- Toshinori Yabuuchi,
- Makina Yabashi,
- Bratislav Lukic,
- Alexander Rack,
- Lisa M. V. Zinta,
- Tommaso Vinci,
- Alessandra Benuzzi-Mounaix,
- Alessandra Ravasio,
- Dominik Kraus
Affiliations
- Ben Heuser
- Institut für Physik, Universität Rostock
- Armin Bergermann
- Institut für Physik, Universität Rostock
- Michael G. Stevenson
- Institut für Physik, Universität Rostock
- Divyanshu Ranjan
- Institut für Physik, Universität Rostock
- Zhiyu He
- Institut für Physik, Universität Rostock
- Julian Lütgert
- Institut für Physik, Universität Rostock
- Samuel Schumacher
- Institut für Physik, Universität Rostock
- Mandy Bethkenhagen
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université
- Adrien Descamps
- School of Mathematics and Physics, Queen’s University Belfast
- Eric Galtier
- SLAC National Accelerator Laboratory
- Arianna E. Gleason
- SLAC National Accelerator Laboratory
- Dimitri Khaghani
- SLAC National Accelerator Laboratory
- Griffin D. Glenn
- SLAC National Accelerator Laboratory
- Eric F. Cunningham
- SLAC National Accelerator Laboratory
- Siegfried H. Glenzer
- SLAC National Accelerator Laboratory
- Nicholas J. Hartley
- SLAC National Accelerator Laboratory
- Jean-Alexis Hernandez
- European Synchrotron Radiation Facility
- Oliver S. Humphries
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics
- Kento Katagiri
- Materials Science and Engineering, Stanford University
- Hae Ja Lee
- SLAC National Accelerator Laboratory
- Emma E. McBride
- School of Mathematics and Physics, Queen’s University Belfast
- Kohei Miyanishi
- RIKEN SPring-8 Center
- Bob Nagler
- SLAC National Accelerator Laboratory
- Benjamin Ofori-Okai
- SLAC National Accelerator Laboratory
- Norimasa Ozaki
- Graduate School of Engineering, Osaka University
- Silvia Pandolfi
- SLAC National Accelerator Laboratory
- Chongbing Qu
- Institut für Physik, Universität Rostock
- Philipp Thomas May
- Institut für Physik, Universität Rostock
- Ronald Redmer
- Institut für Physik, Universität Rostock
- Christopher Schoenwaelder
- SLAC National Accelerator Laboratory
- Keiichi Sueda
- RIKEN SPring-8 Center
- Toshinori Yabuuchi
- RIKEN SPring-8 Center
- Makina Yabashi
- RIKEN SPring-8 Center
- Bratislav Lukic
- European Synchrotron Radiation Facility
- Alexander Rack
- European Synchrotron Radiation Facility
- Lisa M. V. Zinta
- Institut für Physik, Universität Rostock
- Tommaso Vinci
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université
- Alessandra Benuzzi-Mounaix
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université
- Alessandra Ravasio
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université
- Dominik Kraus
- Institut für Physik, Universität Rostock
- DOI
- https://doi.org/10.1038/s41598-024-62367-7
- Journal volume & issue
-
Vol. 14,
no. 1
pp. 1 – 11
Abstract
Abstract Laser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states. Analysing the structural integrity along different release paths via molecular dynamic simulations, we found substantial disintegration rates upon shock release, increasing with the on-Hugnoiot shock temperature. We also find that recrystallization can occur after the expansion and hence during the release, depending on subsequent cooling mechanisms. Our study suggests higher ND recovery rates from off-Hugoniot states, e.g., via double-shocks, due to faster cooling. Laser-driven shock compression experiments of polyethylene terephthalate (PET) samples with in situ X-ray probing at the simulated conditions found diamond signal that persists up to 11 ns after breakout. In the diffraction pattern, we observed peak shifts, which we attribute to thermal expansion of the NDs and thus a total release of pressure, which indicates the stability of the released NDs.