Magnetochemistry (Mar 2023)
Magnetic Switchability via Thermal-Induced Structural Phase Transitions in Molecular Solids
Abstract
Magnetically switchable molecular solids with stimuli-responsive ON/OFF characteristics are promising candidates for smart switches and magnetic storage. In addition to conventional spin-crossover/charge-transfer materials whose magnetic responses arise from changes in the electronic structure of the metal centers, peripheral chemical entities that exhibit tunability provide an alternative and promising tactic for the construction of magnetic multi-stable materials. Temperature changes can trigger a reversible structural phase transition that can affect the coordination environment of a transition-metal center because of the thermal-induced motion of ligands, counterions, neutral guests, and/or changes in coordination number, thus potentially realizing magnetic bistability which can arise from a concomitant spin state change or the modulation of orbital angular momentum. Perspectives and challenges are also highlighted to provide insights into its development.
Keywords