Biomedicine & Pharmacotherapy (Sep 2021)
Supplementation of cumin seed powder prevents oxidative stress, hyperlipidemia and non-alcoholic fatty liver in high fat diet fed rats
Abstract
The present investigation was an attempt to evaluate the hypoglycemic, lipid-lowering, antioxidant and hepatoprotective effects of cumin (Cuminum cyminum family: Apiaceae) supplementation in high fat (HF) diet fed rats. Male Wistar rats were divided into four groups, such as control, control+ cumin, HF and HF+ cumin. Oral glucose tolerance test, plasma lipids, oxidative stress parameters, antioxidant enzymes activities, and liver dysfunction marker enzyme activities were evaluated. Additionally, histological staining of liver tissue was performed to evaluate the inflammatory cells infiltration, iron deposition and fibrosis. The current investigation demonstrated that 1% (w/w) supplementation of cumin powder significantly reduced HF diet-induced glucose intolerance, epididymal and mesenteric fat wet weights and lipid parameters like triglycerides, total cholesterol and low-density lipoproteins. Oxidative stress-related biomarkers including thiobarbituric acid reactive substances (TBARS), nitric oxide (NO) and advanced oxidation protein product (APOP) were also reduced by cumin supplementation. Moreover, HF-diet increased the activity of hepatic biomarker enzymes such as alanine transaminase (ALT) and alkaline phosphatase (ALP) activities which were significantly reduced by cumin powder supplementation. On the other hand, cumin powder supplementation was able to restore the reduced glutathione level with parallel augmentation of the antioxidant enzymes activities such as superoxide dismutase (SOD) and catalase in liver of HF diet-fed rats. Additionally, histological assessments confirmed that cumin powder supplementation also normalized the fat droplet deposition and inflammatory cells infiltration in the liver of HF diet-fed rats. This study suggests that cumin powder supplementation ameliorates dyslipidemia, oxidative stress and hepatic damage in HF diet-fed rats.