Nature Communications (Jun 2022)

Automated detection and segmentation of non-small cell lung cancer computed tomography images

  • Sergey P. Primakov,
  • Abdalla Ibrahim,
  • Janita E. van Timmeren,
  • Guangyao Wu,
  • Simon A. Keek,
  • Manon Beuque,
  • Renée W. Y. Granzier,
  • Elizaveta Lavrova,
  • Madeleine Scrivener,
  • Sebastian Sanduleanu,
  • Esma Kayan,
  • Iva Halilaj,
  • Anouk Lenaers,
  • Jianlin Wu,
  • René Monshouwer,
  • Xavier Geets,
  • Hester A. Gietema,
  • Lizza E. L. Hendriks,
  • Olivier Morin,
  • Arthur Jochems,
  • Henry C. Woodruff,
  • Philippe Lambin

DOI
https://doi.org/10.1038/s41467-022-30841-3
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Correct interpretation of computer tomography (CT) scans is important for the correct assessment of a patient’s disease but can be subjective and timely. Here, the authors develop a system that can automatically segment the non-small cell lung cancer on CT images of patients and show in an in silico trial that the method was faster and more reproducible than clinicians.