Quantum (Jan 2020)
Homotopical approach to quantum contextuality
Abstract
We consider the phenomenon of quantum mechanical contextuality, and specifically parity-based proofs thereof. Mermin’s square and star are representative examples. Part of the information invoked in such contextuality proofs is the commutativity structure among the pertaining observables. We investigate to which extent this commutativity structure alone determines the viability of a parity-based contextuality proof. We establish a topological criterion for this, generalizing an earlier result by Arkhipov.