Materials Today Bio (Feb 2024)

In vitro and in vivo studies on biodegradable Zn porous scaffolds with a drug-loaded coating for the treatment of infected bone defect

  • Xiang Jin,
  • Dongxu Xie,
  • Zhenbao Zhang,
  • Aobo Liu,
  • Menglin Wang,
  • Jiabao Dai,
  • Xuan Wang,
  • Huanze Deng,
  • Yijie Liang,
  • Yantao Zhao,
  • Peng Wen,
  • Yanfeng Li

Journal volume & issue
Vol. 24
p. 100885

Abstract

Read online

Additively manufactured biodegradable zinc (Zn) scaffolds have great potential to repair infected bone defects due to their osteogenic and antibacterial properties. However, the enhancement of antibacterial properties depends on a high concentration of dissolved Zn2+, which in return deteriorates osteogenic activity. In this study, a vancomycin (Van)-loaded polydopamine (PDA) coating was prepared on pure Zn porous scaffolds to solve the above dilemma. Compared with pure Zn scaffolds according to comprehensive in vitro tests, the PDA coating resulted in a slow degradation and inhibited the excessive release of Zn2+ at the early stage, thus improving cytocompatibility and osteogenic activity. Meanwhile, the addition of Van drug substantially suppressed the attachment and proliferation of S. aureus and E. coli bacterial. Furthermore, in vivo implantation confirmed the simultaneously improved osteogenic and antibacterial functions by using the pure Zn scaffolds with Van-loaded PDA coating. Therefore, it is promising to employ biodegradable Zn porous scaffolds with the proposed drug-loaded coating for the treatment of infected bone defects.

Keywords