Advances in Radiation Oncology (Apr 2019)
MRI Radiomic Features Are Independently Associated With Overall Survival in Soft Tissue Sarcoma
Abstract
Purpose: Soft tissue sarcomas (STS) represent a heterogeneous group of diseases, and selection of individualized treatments remains a challenge. The goal of this study was to determine whether radiomic features extracted from magnetic resonance (MR) images are independently associated with overall survival (OS) in STS. Methods and Materials: This study analyzed 2 independent cohorts of adult patients with stage II-III STS treated at center 1 (N = 165) and center 2 (N = 61). Thirty radiomic features were extracted from pretreatment T1-weighted contrast-enhanced MR images. Prognostic models for OS were derived on the center 1 cohort and validated on the center 2 cohort. Clinical-only (C), radiomics-only (R), and clinical and radiomics (C+R) penalized Cox models were constructed. Model performance was assessed using Harrell's concordance index. Results: In the R model, tumor volume (hazard ratio [HR], 1.5) and 4 texture features (HR, 1.1-1.5) were selected. In the C+R model, both age (HR, 1.4) and grade (HR, 1.7) were selected along with 5 radiomic features. The adjusted c-indices of the 3 models ranged from 0.68 (C) to 0.74 (C+R) in the derivation cohort and 0.68 (R) to 0.78 (C+R) in the validation cohort. The radiomic features were independently associated with OS in the validation cohort after accounting for age and grade (HR, 2.4; P = .009). Conclusions: This study found that radiomic features extracted from MR images are independently associated with OS when accounting for age and tumor grade. The overall predictive performance of 3-year OS using a model based on clinical and radiomic features was replicated in an independent cohort. Optimal models using clinical and radiomic features could improve personalized selection of therapy in patients with STS.