Journal of Saudi Chemical Society (Dec 2021)
The green synthesis of carbon quantum dots and applications for sulcotrione detection and anti-pathogen activities
Abstract
In this study, we synthesized simple, cheap, and stable nitrogen (N)-doped carbon quantum dots (N-CQDs) from Moringa oleifera roots. The N-CQDs exhibited an intense blue fluorescence and a quantum yield (QY) of up to 43.4%. When excited at 350 nm, the highest generated wavelength was observed at 445 nm. These N-CQDs were then successfully used to detect sulcotrione (limit of detection = 2 μg/mL); the method was reliable and exhibited good feasibility for measurements in real samples. When the N-CQDs concentration was 11.0 μL/mL, inhibitory rates against the pathogens, Corynespora cassiicola and Phytophtora nicotianae were 82.8% and 75.3%, respectively. To investigate N-CQDs safety for plant growth, different concentrations were investigated using sorghum seedlings, with N-CQDs exhibiting very low toxicity toward plant growth. Thus, these findings provide a basis for the development of N-CQDs as green pesticides.