NeuroImage: Clinical (Jan 2023)
Difference of mean Hounsfield units (dHU) between follow-up and initial noncontrast CT scan predicts 90-day poor outcome in spontaneous supratentorial acute intracerebral hemorrhage with deep convolutional neural networks
Abstract
Objectives: This study aimed to investigate the usefulness of a new non-contrast CT scan (NCCT) sign called the dHU, which represented the difference in mean Hounsfield unit values between follow-up and the initial NCCT for predicting 90-day poor functional outcomes in acute supratentorial spontaneous intracerebral hemorrhage(sICH) using deep convolutional neural networks. Methods: A total of 377 consecutive patients with sICH from center 1 and 91 patients from center 2 (external validation set) were included. A receiver operating characteristic (ROC) analysis was performed to determine the critical value of dHU for predicting poor outcome at 90 days. Modified Rankin score (mRS) >3 or >2 was defined as the primary and secondary poor outcome, respectively. Two multivariate models were developed to test whether dHU was an independent predictor of the two unfavorable functional outcomes. Results: The ROC analysis showed that a dHU >2.5 was a critical value to predict the poor outcomes (mRS >3) in sICH. The sensitivity, specificity, and accuracy of dHU >2.5 for poor outcome prediction were 37.5%, 86.0%, and 70.6%, respectively. In multivariate models developed after adjusting for all elements of the ICH score and hematoma expansion, dHU >2.5 was an independent predictor of both primary and secondary poor outcomes (OR = 2.61, 95% CI [1.32,5.13], P = 0.006; OR = 2.63, 95% CI [1.36,5.10], P = 0.004, respectively). After adjustment for all possible significant predictors (p 2.5 had a positive association with primary and secondary poor outcomes (OR = 3.25, 95% CI [1.52,6.98], P = 0.002; OR = 3.42, 95% CI [1.64,7.15], P = 0.001). Conclusions: The dHU of hematoma based on serial CT scans is independently associated with poor outcomes after acute sICH, which may help predict clinical evolution and guide therapy for sICH patients.