Phytopathology Research (Aug 2020)

Wheat root transcriptional responses against Gaeumannomyces graminis var. tritici

  • Jie Zhang,
  • Haixia Yan,
  • Mingcong Xia,
  • Xiaoyun Han,
  • Lihua Xie,
  • Paul H. Goodwin,
  • Xin Quan,
  • Runhong Sun,
  • Chao Wu,
  • Lirong Yang

DOI
https://doi.org/10.1186/s42483-020-00066-7
Journal volume & issue
Vol. 2, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Wheat root rot caused by Gaeumannomyces graminis var. tritici (Ggt) results in severe yield losses in wheat production worldwide. However, little is known about the molecular mechanism that regulates systemic symptom development in infected wheat. Fluorescent microscopy observation of the stained wheat roots infected by Ggt showed that lesions were visible when the fungus could be detected in the endodermis, pericycle and phloem at 5 days post inoculation (dpi), and rust symptoms were visible when there was extensive fungal colonization in the root cortex at 6 dpi. Transcriptome sequencing of Ggt-inoculated wheat roots and healthy control root samples was performed at 5 dpi to identify Ggt-induced gene expression changes in wheat roots at the time of lesion formation. A total of 3973 differentially expressed genes (DEGs) were identified, of which 1004 (25.27%) were up-regulated and 2969 (74.73%) were down-regulated in Ggt-inoculated wheat roots compared with those in control roots. GO annotation and KEGG pathway analysis of these DEGs revealed that many of them were associated with pathogen resistance, such as those involved in oxidation-reduction process, tryptophan biosynthesis process, and phenylpropanoid biosynthesis process. Analysis of DEGs revealed that 15 DEGs were involved in cellular regulation, 57 DEGs in signal transduction pathways, and 75 DEGs in cell wall reorganization, and 23 DEGs are pathogenesis-related proteins. Reverse transcription quantitative PCR (RT-qPCR) of 13 of those DEGs showed that these genes may play roles in wheat resistance against Ggt. Overall, this study represents the first transcriptional profiling of wheat roots in response to Ggt infection and further characterization of DEGs identified in this study may lead to better understanding of resistance against take-all in wheat.

Keywords