Biophysica (Jan 2023)
Emergence of Gloomy Eyelet inside DNA
Abstract
The purpose of this article is to study gloomy eyelet (GE) inside the cell nucleus by using models of warp drive hydro (WDH), swinging spring, Rankine, co-moving reference frame, and Poincare. The beat wave frequency (ω) of blood pressure on the vessel and the swinging spring frequency (Ω) of DNA coincide together on the Rankine model. In this case, it leads to appearing as a sudden pressure drop and an accelerated cavity in the medium of the warp drive hydro (WDH) model. In transient conditions, the vortex flow inside WDH can generate gloomy eyelet (GE), and the tiny distortion of nano space–time revealed inside the gloomy eyelet (GE) inside DNA and the tiny distortion of nano space–time revealed inside the co-moving reference frame (CMRF) model of the gloomy eyelet (GE). The space–time distortion can act as a hidden potential for the cell nucleus and some behaviors of gloomy eyelet can be traced by the frequency responses of human body organs. The interactions between two adjacent different mediums such as the normal cells and abnormal cells, earth’s gravitational effects can lead to changes in the distortion of space–time inside the cell nucleus. Transient bonds between particles can be expected to appear in the gloomy eyelet inside DNA. Identifying the range of changes in the frequency responses and the transient bonds inside the cell nucleus can be introduced as one of the health indicators.
Keywords