Desert (Jun 2019)
Application of soil properties, auxiliary parameters, and their combination for prediction of soil classes using decision tree model
Abstract
Soil classification systems are very useful for a simple and fast summarization of soil properties. These systems indicate the method for data summarization and facilitate connections among researchers, engineers, and other users. One of the practical systems for soil classification is Soil Taxonomy (ST). As determining soil classes for an entire area is expensive, time-consuming, and almost impossible, this research has tried to predict the soil classes in each level of the ST system (up to family level) by using the data of 120 excavated pedons and some auxiliary parameters (such as derivatives of digital elevation model, i.e., DEM) in Shahrekord plain, central Iran. For this reason, the decision tree model was encoded and implemented in the MATLAB software for three conditions: use of soil properties, auxiliary parameters, and its combination. According to the results, soil class prediction error by using soil properties, auxiliary parameters, and its combination was estimated to be 0, 3.33 and 0% for order and suborder levels; 0.83, 15 and 0.83% for great group level; 3.33, 22.5 and 3.33% for subgroup level and 30, 52.5 and 30% for family level, respectively. In addition, the use of kriging maps of soil properties (instead of 120 observational points) decreased the prediction error of the modeling in all levels of the ST system. It seems that the effect of auxiliary parameters (in comparison to soil properties) is not very significant for predicting soil classes in low-relief areas.
Keywords