Experimental Hematology & Oncology (Sep 2020)

miR-100 inhibits cell proliferation in mantle cell lymphoma by targeting mTOR

  • Luhui Lin,
  • Yiqun Huang,
  • Wei Zhuang,
  • Ping Lin,
  • Xudong Ma

DOI
https://doi.org/10.1186/s40164-020-00182-2
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background miR-100 is reported to be associated with cell proliferation and apoptosis. However, the function of miR-100 in mantle cell lymphoma (MCL) is unknown. The purpose of this study is to analyze the abnormal expression of miR-100 and mTOR in MCL together with their potential biological function and pathogenesis. Method Eighteen MCL tissue samples and 3 cell lines (Jeko-1, Mino, Granta-519) were investigated in this research study, while eighteen samples of proliferative lymphadenitis from patients and peripheral lymphocyte cells from healthy volunteers served as controls. The expression and alteration of miR-100 and mTOR mRNA were detected by RT-PCR. The expression and alteration of mTOR protein were explored by Western blot. LV-miR-100-up and LV-mTOR-RNAi were constructed and transfected by lentivirus transfection. Cell proliferation, cell apoptosis and the cell cycle were detected using CCK-8 and flow cytometry. Bioinformatics prediction software was used to predict the miR-100 target gene of mTOR. A double luciferase experiment was used to verify miR-100 targeting at the mTOR-3′-UTR. The interaction between miR-100 and mTOR was further studied using recovery experiments. GraphPad Prism 7 software (version 7.2) was used for statistical analysis, and a P value < 0.05 was considered statistically significant. Results We found that the expression of miR-100 mRNA in MCL tissues and cell lines was lower, while that of the mTOR protein was higher. There was a negative correlation between miR-100 and mTOR in both MCL tissues and cell lines. Promoting miR-100 and inhibiting mTOR could inhibit cell proliferation, induce cell apoptosis and block the cell cycle in the G1 phase. A double luciferase reporter assay showed that mTOR was one of the target genes of miR-100. The recovery experiment demonstrated that PV-mTOR-up partially set off the effect of LV-miR-100-up on decreasing mTOR expression, inhibiting proliferation, inducing apoptosis and blocking the cell cycle in G1 phase in both Jeko-1 and Mino cells. Conclusions Abnormal expression of miR-100 and mTOR was found in MCL, which included downregulation of miR-100 and upregulation of mTOR. The expression of mTOR is negatively correlated with miR-100. It may play an important role in MCL pathogenesis. miR-100 up-regulation can inhibit cell proliferation, promote cell apoptosis, and inhibit cell cycle in G1 phase by targeting the mTOR gene. miR-100 may potentially be an anti-mantle cell lymphoma gene.

Keywords