Frontiers in Earth Science (Jan 2023)
Evolutionary mechanisms of the strong winds associated with an intense cold wave event and their effects on the wind power production
Abstract
Cold wave events (CWEs) often cause major economic losses and serious casualties in the cold seasons, making CWEs among the most significant types of disastrous weather. Previous studies have mainly focused on disasters due to abrupt drops in surface temperatures, with less discussion of the strong winds associated with CWEs. Based on an intense CWE that occurred in late December 2020, we investigated the evolutionary mechanisms of the associated strong winds in terms of kinetic energy (KE) budget and evaluated the effects of this CWE on wind power production based on quantitative comparisons with the mean state. The results showed that the CWE occurred under favorable background conditions, which were characterized by a southward-moving transversal trough and a southeastward-moving shortwave trough in the middle troposphere. The surface high ridge that formed around Lake Baikal and the cold front around the southern periphery of the ridge were key factors related to the CWE evolution. The positive work carried out on the horizontal wind by the pressure gradient force that linked a lower tropospheric high-pressure ridge inland and a low-pressure trough offshore and the downward momentum transportation due to the descending motions behind the cold front dominated the enhancement and sustainment of the CWE-associated strong winds. The CWE contributed to wind power production by 1) increasing the wind power density (by an average of ∼1.05-fold) and 2) improving the availability of the wind to generate power, as it reduced the percentage of zero wind power generation by ∼6.4%, while maintaining the high-wind-velocity cut-out percentage.
Keywords