Plant Direct (Jan 2022)
Genotypic differences in response of durum wheat (Triticum durum Desf.) to lime‐induced iron chlorosis
Abstract
Abstract Wheat, durum wheat, is the first cereal cultivated and consumed in Tunisia. Because the dominance of calcareous soils in its agroecological systems, known by their low availability of iron (Fe) inducing Fe chlorosis and limiting crop production, its yield remains low. Therefore, the search for tolerant genotypes is always current. In this context, the physiological behavior of six Tunisian genotypes of durum wheat (salim, karim, razek, khiar, inrat100, and maali) cultivated on calcareous and fertile soils for 2 months in a pot experiment was investigated. A greenhouse was used to conduct experiments under natural light. Plant growth, SPAD index, Fe nutrition, Fe distribution, and photosynthesis were monitored and used to evaluate and discriminate their respective physiological responses. On calcareous soil, results revealed reduced plant growth, active Fe, SPAD index, and net photosynthesis. Genotypic differences in the response of wheat to calcareous‐induced Fe deficiency were observed and allowed to classify the genotypes Salim and Karim as relatively tolerant. These genotypes expressed Fe translocation capacity (FeT) up to 3 times, Fe use efficiency for photosynthesis (FeUEAn) up to 1.6 times, and chlorophyll use efficiency for photosynthesis (ChlUEAn) up to 3.5 times greater than that expressed by the other genotypes, particularly inrat100 and maali. Thus, the relative tolerance of Salim and Karim is the result of the high ability of Fe uptake and translocation to shoots to support chlorophyll biosynthesis, photosynthesis, and plant growth as well as an important Fe and chlorophyll use efficiency.
Keywords